Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019
Publications Code WFM01_01_1901_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Mark Scheme

Question Number	Scheme		Notes	Marks
1.	$A(12,12)$ lies on $y^{2}=12 x$. l passes through A and S l meets the directrix of the parabola at B			
(a)	$\{a=3 \Rightarrow S$ has coordinates $\}(3,0)$		Either states or uses $(3,0)$ Can be implied by later work	B1
	Way 1 Both $m_{l}=\frac{12}{12-" 3 "}$ and either - $y=\frac{12}{12-" 3 "}(x-" 3 ")$ or - $0=\frac{12}{12-" 3 "}(" 3 ")+c \Rightarrow y=\frac{12}{12-" 3 "} x+$ their c or - $12=\frac{12}{12-" 3 "}(12)+c \Rightarrow y=\frac{12}{12-" 3 "} x+$ their c		Way 1 Correct method for finding the gradient between their S and $(12,12)$ and a correct method for finding the equation of l	M1
	Way 2$\left\{\begin{array}{c} 3 m+c=0 \\ 12 m+c=12 \end{array} \Rightarrow m=\ldots, c=\ldots \text { and } y=(\text { their } m) x+\text { their } c\right.$		Uses $y=m x+c, \underline{\text { Way } 2}$ their S Uses $y=m x+c$, their S and $(12,12)$ to write two linear equations. Finds $m=\ldots, c=\ldots$ and writes $y=($ their $m) x+$ their c	
	$\begin{gathered} \text { e.g. } l: \quad y=\frac{12}{9}(x-3), y=\frac{4}{3} x-4, y-12=\frac{12}{9}(x-12), \\ 4 x-3 y-12=0 \quad \text { or } 3 y=4 x-12 \end{gathered}$		Any correct form for the equation of l which can be simplified or un-simplified Note: ignore subsequent working following on from a correct answer seen	A1
	Note: At least one of either x_{S} or y_{S} must be correct in order to gain M1			(3)
(b)	\{directrix has equation\} $x=-3$	Either states or uses $x=-3$ or states or uses $x=-($ their a), $a>0$ where a is the x-coordinate of their S		M1
	$y=\frac{12}{9}(-3-3)\{=-8\}$	depend Substitute or substitut x-coordinate o (and not a cur	dent on the previous M1 mark $x=-3$ into their equation of l es $x=-a, a>0$ where a is the f their S into their equation of l. Note: l must represent a line ve) for this mark to be awarded ote: This mark may be implied by their y-coordinate	dM1
	\{coordinates of B are\} ($-3,-8$)		$(-3,-8)$	A1
				(3)
				6

	Question 1 Notes	
1. (a)	Note	Give B0 for $a=3$ by itself without reference to (3,0)
	Note	Give B1 in part (a) for $S(3,0)$ (and not (3,0)) stated in part (b)
(b)	Note	Give $1^{\text {st }} \mathrm{M} 1$ for stating the x-coordinate of B as -3 or the x-coordinate of B as - (their a), $a>0$ where a is the x-coordinate of their S E.g. Give $1^{\text {st }} \mathrm{M} 1$ for $B(-3, \ldots)$
	Note	Give A0 for $x=-3, y=-8$ without reference to ($-3,-8$)
	Note	Give A0 for $x=-3, y=-8$ followed by ($-8,-3$)
	Note	Give A0 if more than one set of coordinates are given for B
(a), (b)	Note	Give B1 for a sketch with either 3 or $(3,0)$ marked on the x-axis
	Note	Give $1^{\text {st }} \mathrm{M} 1$ in part (b) for a sketch with a vertical line drawn at $x=-3$ with -3 indicated
	Note	Give ${ }^{\text {st }} \mathrm{M} 1$ in part (b) a statement "directrix is $x=-3$ " seen anywhere

	Question 2 Notes Continued	
2. (b)	Note	Reminder: Method Mark for solving a 3TQ, " $a z^{2}+b z+c=0 "$ Formula: Attempt to use the correct formula (with values for a, b and $c)$ Completing the square: $\left(z \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $z=\ldots$
	Note	Send to review solutions involving α, β, γ roots. E.g. $-2=-(\alpha+\beta+\gamma)$
(c)	Note	Drawing the lines $z=2, z=4 \mathrm{i}, z=-4 \mathrm{i}$ instead of plotting the points $(2,0),(0,4)$ and $(0,-4)$ is B0 B0
	Note	Indication of coordinates includes stating e.g. $z_{1}=2, z_{2}=4 \mathrm{i}, z_{3}=-4 \mathrm{i}$ and plotting z_{1}, z_{2} and z_{3} in their relevant positions on an Argand diagram
(b), (c)	Note	You cannot recover work for part (b) in part (c)

	Question 3 Notes Continued	
3. (b)	Note	Allow M1 for $\frac{100}{3}\left(4(100)^{2}+36(100)+107\right)+(5)^{2}$ and A1 for obtaining 1456925
	Note	$\begin{aligned} & \text { Allow M1 for } 4\left(\frac{1}{6}(100)(101)(201)\right)+20\left(\frac{1}{2}(100)(101)\right)+25(100)+(5)^{2} \\ & \{=1353400+101000+2500+25\} \text { and A1 for obtaining } 1456925 \end{aligned}$
	Note	dependent on obtaining $1^{\text {st }}$ M1, $1^{\text {st }}$ A1 and B1 in part (a) Allow M1 A1 for $1456900+25=1456925$
	Note	Give M0 A0 for writing down 1456925 by itself with no supporting working
	Note	Give M0 A0 for listing individual terms i.e $\sum_{r=0}^{100}(2 r+5)^{2}=5^{2}+7^{2}+9^{2}+11^{2}+\ldots+205^{2}=1456925$, by itself is M0 A0
	Note	Give M0 A0 for applying $\frac{100}{3}\left[(2(100)+9)^{2}+26\right]+\frac{(-1)}{3}\left[(2((-1))+9)^{2}+26\right]=1456900--25=1456925$

Question Number	Scheme		Notes			Marks
4.	Given $\mathrm{f}(x)=2 x^{3}-\frac{7}{x^{2}}+16, x \neq 0$; Roots $\alpha, \beta:-2 \leq \alpha \leq-1$ and $0.6 \leq \beta \leq 0.7$					
$\begin{gathered} \text { (a) } \\ \text { Way } 1 \end{gathered}$	$\mathrm{f}(-1.5)=\ldots$			Attempts to evaluate f(-1.5)		M1
	$\mathrm{f}(-1.75)=\ldots$			dependent on the previous M mark Evaluates $\mathrm{f}(-1.75)$ (and not $\mathrm{f}(-1.25)$)		dM1
						A1
	Note that some candidates only indicate the sign of f and not its value. In this case the M marks can still score as defined but not the A mark.					(3)
(a) Way 2	Common approach in the form of a table (use the mark scheme above)					
	- $\quad \mathrm{f}(a)$	b	$\mathrm{f}(b)$	$\frac{a+b}{2}$	$\mathrm{f}\left(\frac{a+b}{2}\right)$	
	-2	-1	7	-1.5	6.1388...	
	-2	-1.5	6.1388...	-1.75	2.9955...	
	so interval is $-2 \leq \alpha \leq-1.75$ would score full marks in part (a)					
(b)	$\mathrm{f}^{\prime}(x)=6 x^{2}+14 x^{-3}$	At least one of either $2 x^{3} \rightarrow \pm A x^{2}$ or $-\frac{7}{x^{2}} \rightarrow \pm B x^{-3} ; A, B \neq 0$				M1
		Correct differentiation which can be simplified or un-simplified				A1
	$\left\{\beta \simeq 0.65-\frac{\mathrm{f}(0.65)}{\mathrm{f}^{\prime}(0.65)}\right\} \Rightarrow \beta \simeq 0.65-\frac{-0.01879733728 \ldots}{53.51360719 \ldots}$			dependent on the previous M mark Valid attempt at Newton-Raphson using their values of $f(0.65)$ and $f^{\prime}(0.65)$		dM1
	$\{\beta=0.6503512623 \ldots\} \Rightarrow \beta=0.6504(4 \mathrm{dp})$			dependent on all 3 previous marks 0.6504 on their first iteration (Ignore any subsequent iterations)		$\begin{array}{\|l\|} \hline \text { A1 } \\ \text { cso } \\ \text { cao } \\ \hline \end{array}$
	Correct differentiation followed by a correct answer of 0.6504 scores full marks in part (b) Correct answer with no working scores no marks in part (b)					(4)
						7
	Question 4 Notes					
4. (a)	Note ${\text { Give } 2^{\text {nd }} \mathrm{M} 0 \text { and A0 }}^{\text {a }}$	or evaluatin	$\mathrm{f}(-1.25)$	and $\mathrm{f}(-1.75)$		
	Note ${ }^{\text {D }}$ Do not allow "inter	$=\mathrm{f}(-2)$ to	5)" unless	recovered.		
	A method of evaluating $f(-1.5)$ followed by $f(-1.75)$ with no evidence of evaluating at least one of either $f(-2)$ or $f(-1)$ is M1 dM1 A0.					
	Do not confuse the -1.75 in $\mathrm{f}(-2)=-1.75$ with the -1.75 in $(-2,-1.75)$					

	Question 4 Notes Continued	
4. (b)	dM1	This mark can be implied by applying at least one correct value of either $\mathrm{f}(0.65)$ or their $\mathrm{f}^{\prime}(0.65)$ (where $\mathrm{f}^{\prime}(0.65)$ is found using their $\left.\mathrm{f}^{\prime}(x)\right)$ to 1 significant figure in $0.65-\frac{\mathrm{f}(0.65)}{\mathrm{f}^{\prime}(0.65)}$. So just $0.65-\frac{f(0.65)}{f^{\prime}(0.65)}$ with an incorrect answer and no other evidence scores final dM0A0.
	Note	If you see $0.65-\frac{\mathrm{f}(0.65)}{\mathrm{f}^{\prime}(0.65)}=0.6504$ with no algebraic differentiation, then send the response to review.
	Note	You can imply the M1 A1 marks for algebraic differentiation for either - $\mathrm{f}^{\prime}(0.65)=6(0.65)^{2}+14(0.65)^{-3}$ - $\mathrm{f}^{\prime}(0.65)$ applied correctly in $\beta \simeq 0.65-\frac{2(0.65)^{3}-\frac{7}{(0.65)^{2}}+16}{6(0.65)^{2}+14(0.65)^{-3}}$
	Note	Differentiating INCORRECTLY to give $\mathrm{f}^{\prime}(x)=6 x^{2}-14 x^{-3}$ leads to $\beta \simeq 0.65-\frac{-0.01879733728 \ldots}{-48.44360719 \ldots}=0.6496119749 \ldots=0.6496(4 \mathrm{dp})$ This response should be awarded M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $6 x^{2}-14 x^{-3}$ and $\beta \simeq 0.65-\frac{\mathrm{f}(0.65)}{\mathrm{f}^{\prime}(0.65)}=0.6496$ is M1 A0 dM1 A0

	Question 5 Notes	
5. (a)	Note	Allow $y p^{2}+x=8 p$ or $8 p=x+p^{2} y$ or $8 p=p^{2} y+x$ for the final A1
(b)	Note	Do not confuse (7,1) or $x=7, y=1$ with $p=7,1$
	Note	A decimal answer of e.g. (4,4), (28, 0.57$)$ (without a correct exact answer) is $2^{\text {nd }} \mathrm{A} 0$
	Note	Imply the dM 1 mark for writing down the correct roots for their quadratic equation. E.g. $7+p^{2}=8 p$ or $p^{2}-8 p+7=0 \rightarrow p=7,1$
	Note	E.g. give dM0 for $7+p^{2}=8 p$ or $p^{2}-8 p+7=0 \rightarrow p=-7,-1$ [incorrect solution] with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 for either - $7+p^{2}=8 p \rightarrow x=4, y=4$ or $(4,4)$ - $7+p^{2}=8 p \rightarrow x=28, y=\frac{4}{7}$ or awrt 0.57 or $\left(28, \frac{4}{7}\right)$ or (28 , awrt 0.57) with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 A1 for - $7+p^{2}=8 p \rightarrow(4,4),\left(28, \frac{4}{7}\right)$ with NO INTERMEDIATE working.
	Note	Give M0 dM0 A0 A0 for writing down $(4,4),\left(28, \frac{4}{7}\right)$ with no prior working.
	Note	Only a maximum of M1 dM1 A0 A0 can be scored for substituting for $x=1, y=7$ (and not $x=7, y=1$) into $x+p^{2} y=8 p$ Note: $x=1, y=7 \Rightarrow 1+7 p^{2}=8 p \Rightarrow(7 p-1)(p-1) \Rightarrow p=\frac{1}{7}, 1 \Rightarrow\left(\frac{4}{7}, 28\right),(4,4)$
	Note	Alt 1 Method - $x=7, y=1 \Rightarrow 7+p^{2}=8 p \Rightarrow(p-1)(p-7) \Rightarrow p=1,7$ - $p=1 \Rightarrow x+(1) y=8(1)$ and $x+\frac{16}{x}=8 \Rightarrow x^{2}-8 x+16=0 \Rightarrow(x-4)(x-4)=0$ $\Rightarrow x=4, y=4 \Rightarrow(4,4)$ - $p=7 \Rightarrow x+49 y=56$ and $x+49\left(\frac{16}{x}\right)=56 \Rightarrow x^{2}-56 x+784=0 \Rightarrow(x-28)(x-28)=0$ $\Rightarrow x=28, y=\frac{4}{7} \Rightarrow\left(28, \frac{4}{7}\right)$
	Note	Incorrect method of substituting $x y=16$ and (7,1) into $x+p^{2} y=8 p$ Give M0 dM0 A0 A0 for $\begin{aligned} & \text { - } x+p^{2}\left(\frac{16}{x}\right)=8 p \text { and } x=7 \Rightarrow 7+\frac{16}{7} p^{2}=8 p \Rightarrow 16 p^{2}-56 p+49=0 \Rightarrow(4 p-7)(4 p-7)=0 \\ & \quad \Rightarrow p=\frac{7}{4} \Rightarrow x=7, y=\frac{16}{7} \Rightarrow\left(7, \frac{16}{7}\right) \end{aligned}$ - $\frac{16}{y}+p^{2} y=8 p$ and $y=1 \Rightarrow 16+p^{2}=8 p \Rightarrow p^{2}-8 p+16=0 \Rightarrow(p-4)(p-4)=0$ $\Rightarrow p=4 \Rightarrow x=16, y=1 \Rightarrow(16,1)$
	Note	Give M1 dM0 A0 A0 for - $x=7, y=1$ into $x+p^{2} y=8 p \Rightarrow 7+p^{2}=8 \Rightarrow(p+1)(p-1) \Rightarrow p=1,-1 \Rightarrow(4,4),(-4,-4)$

Question 6 Notes Continued

6. (a)

Not
Not
Not
Not
Not

Give B0 M1 A0 for $\frac{2}{\alpha}+\frac{2}{\beta}=\frac{2 \beta+2 \alpha}{\alpha \beta}=\frac{2\left(\frac{3-\sqrt{183} \mathrm{i}}{24}\right)+2\left(\frac{3+\sqrt{183} \mathrm{i}}{24}\right)}{\left(\frac{3+\sqrt{183} \mathrm{i}}{24}\right)\left(\frac{3-\sqrt{183} \mathrm{i}}{24}\right)}=\frac{3}{2}$
b) Note A correct method leading to $a=12, b=-15, c=100$ without writing a final answer of $12 x^{2}-15 x+100=0$ is final M1A0
Note Using $\frac{3+\sqrt{183} \mathrm{i}}{24}, \frac{3-\sqrt{183} \mathrm{i}}{24}$ explicitly to find the sum and product of $\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$
to give $x^{2}-\frac{5}{4} x+\frac{25}{3}=0 \Rightarrow 12 x^{2}-15 x+100=0$ scores M0 A0 M0 A0 M1A0 in part (b)
Note
Using $\frac{3+\sqrt{183} \mathrm{i}}{24}, \frac{3-\sqrt{183} \mathrm{i}}{24}$ to find $\alpha+\beta=\frac{1}{4}, \alpha \beta=\frac{1}{3}, \frac{2}{\alpha}+\frac{2}{\beta}=\frac{3}{2}$ and applying $\left\{\alpha+\beta=\frac{1}{4},\right\} \alpha \beta=\frac{1}{3}, \frac{2}{\alpha}+\frac{2}{\beta}=\frac{3}{2}$ can potentially score full marks in part (b).
E.g. Score M1 A1 M1 A1 M1 A1 for

- $\operatorname{Sum}==\frac{2}{\alpha}-\beta+\frac{2}{\beta}-\alpha=\frac{2}{\alpha}+\frac{2}{\beta}-(\alpha+\beta)=\frac{3}{2}-\frac{1}{4}=\frac{5}{4}$
- Product $=\left(\frac{2}{\alpha}-\beta\right)\left(\frac{2}{\beta}-\alpha\right)=\frac{4}{\alpha \beta}-2-2+\alpha \beta=\frac{4}{\left(\frac{1}{3}\right)}-2-2+\frac{1}{3}=\frac{25}{3}$
- $x^{2}-\frac{5}{4} x+\frac{25}{3}=0 \Rightarrow 12 x^{2}-15 x+100=0$

Alternative method for finding the sum
$\operatorname{Sum}=\frac{2}{\alpha}-\beta+\frac{2}{\beta}-\alpha=\frac{2 \beta-\alpha \beta^{2}+2 \alpha-\alpha^{2} \beta}{\alpha \beta}=\frac{2(\alpha+\beta)-\alpha \beta(\beta+\alpha)}{\alpha \beta}$

$$
=\frac{2\left(\frac{1}{4}\right)-\left(\frac{1}{3}\right)\left(\frac{1}{4}\right)}{\left(\frac{1}{3}\right)}=\frac{\frac{1}{2}-\frac{1}{12}}{\frac{1}{3}}=\frac{\frac{5}{12}}{\frac{1}{3}}=\frac{15}{12}=\frac{5}{4}
$$

Note
Alternative method for finding the product

Expands $\left(\frac{2}{\alpha}-\beta\right)\left(\frac{2}{\beta}-\alpha\right)$ to give $\frac{(\alpha \beta-2)^{2}}{\alpha \beta}$ and uses their $\alpha \beta$ at least once in an attempt to find a numerical value for the product of $\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$ Correct product of $\frac{25}{3}$ or $8 \frac{1}{3}$ or $8 . \dot{3}$

Question Number	Scheme	Notes	Marks
7.	$\mathbf{P}=\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right) ;$ (a) $\mathbf{P}^{3}=8 \mathbf{I} ;$ (c) $\mathbf{P}^{35}=2^{k}\left(\begin{array}{rr}-1 & a \\ b & -1\end{array}\right)$		
(a)	$\left\{\mathbf{P}^{2}=\right\}\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right)\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right)=\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$	Finds \mathbf{P}^{2} (which can be un-simplified) with at least 3 correct elements for \mathbf{P}^{2}	M1
	$\begin{aligned} \quad\left\{\mathbf{P}^{3}=\right\}\left(\begin{array}{cc} -2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)=\left(\begin{array}{ll} 8 & 0 \\ 0 & 8 \end{array}\right)=8 \mathbf{I} * \\ \text { or } \quad\left\{\mathbf{P}^{3}=\right\}\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2 \end{array}\right)=\left(\begin{array}{ll} 8 & 0 \\ 0 & 8 \end{array}\right)=8 \mathbf{I} * \end{aligned}$	dependent on the previous M mark Multiplies \mathbf{P}^{2} by \mathbf{P} or multiplies \mathbf{P} by \mathbf{P}^{2} to give a 2×2 matrix of 4 elements for \mathbf{P}^{3} with at least 2 correct elements	dM1
		Correct proof with no errors	A1 *
	Enlargement Enlargement or enlarge or dilation		(3)
(b)			M1
	Centre (0,0) with scale factor 2 about (0,	and scale or factor or times and 2	A1
	Rotation Rotation or rotate (condone turn)		M1
	120 degrees (anticlockwise) about $(0,0)$	Both 120 degrees or $\frac{2 \pi}{3}$ degrees clockwise or $\frac{4 \pi}{3}$ clockwise $0,0)$ or about O or about the origin	A1
			(4)
(c) Way 1	$\mathbf{P}^{35}=\left(\mathbf{P}^{3}\right)^{11} \times \mathbf{P}^{2} \quad$ or $\quad 1 \mathbf{P}^{35}=\mathbf{P}^{33} \times \mathbf{P}^{2}$	$\mathbf{P}^{35}=\mathbf{P}^{33} \times \mathbf{P}^{2}$	
	$=(8 \mathbf{I})^{11} \times\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right) \quad=(2 \mathbf{I})^{33} \times\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$	$\left.\left.\begin{array}{l\|l} \hline 3 \\ \hline \end{array}\right) \quad \begin{array}{c} \left((8 \mathbf{I})^{11} \text { or }(8)^{11}\right) \times\left(\text { their } \mathbf{P}^{2}\right) \\ \left((2 \mathbf{I})^{33}\right. \\ \text { or } \left.(2)^{33}\right) \times\left(\text { their } \mathbf{P}^{2}\right. \end{array}\right)$	M1
	$=2^{34}\left(\begin{array}{cc}-1 & \sqrt{3} \\ -\sqrt{3} & -1\end{array}\right)$	Note: $k=34, a=\sqrt{3}, b=-\sqrt{3}$	A1
			(2)
(c) Way 2	$\mathbf{P}^{35}=\left(\mathbf{P}^{3}\right)^{12} \times \mathbf{P}^{-1}$ or $\mathbf{P}^{35}=\mathbf{P}^{36} \times \mathbf{P}^{-1}$		
	$=(8 \mathbf{I})^{12} \times \frac{1}{(-1)(-1)-(-\sqrt{3})(\sqrt{3})}\left(\begin{array}{cc} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{array}\right.$ or $=(2 \mathbf{I})^{36} \times \frac{1}{(-1)(-1)-(-\sqrt{3})(\sqrt{3})}\left(\begin{array}{cc} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{array}\right.$	$\begin{aligned} & \left((8 \mathbf{I})^{12} \text { or }(8)^{12}\right) \times \frac{1}{\text { their } \operatorname{det}(\mathbf{P})}\left(\begin{array}{cc} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{array}\right) \\ & \left((2 \mathbf{I})^{36} \text { or }(2)^{36}\right) \times \frac{1}{\text { their } \operatorname{det}(\mathbf{P})}\left(\begin{array}{cc} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{array}\right) \\ & \text { where their } \operatorname{det}(\mathbf{P})>1 \end{aligned}$	M1
	$\left\{=\left(2^{36}\right)\left(\frac{1}{4}\right)\left(\begin{array}{cc}-1 & \sqrt{3} \\ -\sqrt{3} & -1\end{array}\right)\right\}=2^{34}\left(\begin{array}{cc}-1 & \sqrt{3} \\ -\sqrt{3} & -1\end{array}\right)$	Correct answer Note: $k=34, a=\sqrt{3}, b=-\sqrt{3}$	A1
			(2)
			9

	Question 7 Notes	
7. (a)	Note	Proof must contain the final steps of $=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$ and $=8 \mathbf{I} \quad$ or $=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$ and $=$ RHS
	Note	Other acceptable proofs for M1 dM1 A1 include $\begin{aligned} \text { - } \mathbf{P}^{3} & =\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right) \text { or }\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)^{3} \\ & =\left(\begin{array}{cc} -2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)=\left(\begin{array}{ll} 8 & 0 \\ 0 & 8 \end{array}\right)=8 \mathbf{I} * \\ \text { - } \mathbf{P}^{3} & =\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right) \text { or }\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)^{3} \\ & =\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2 \end{array}\right)=\left(\begin{array}{cc} 8 & 0 \\ 0 & 8 \end{array}\right)=8 \mathbf{I} * \\ -\mathbf{P}^{3} & =\left(\begin{array}{cc} -2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)=\left(\begin{array}{cc} 8 & 0 \\ 0 & 8 \end{array}\right)=8 \mathbf{I} * \\ -\mathbf{P}^{3} & =\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2 \end{array}\right)=\left(\begin{array}{ll} 8 & 0 \\ 0 & 8 \end{array}\right)=8 \mathbf{I} * \end{aligned}$
(b)	Note	"original point" is not acceptable in place of the word "origin".
	Note	"expand" is $1^{\text {st }} \mathrm{M} 0$
	Note	"enlarge x by 2 and no change in y " is ${ }^{\text {st }} \mathrm{M} 01^{\text {st }} \mathrm{A} 0$
	Note	Writing " 120 degrees" by itself implies by convention " 120 degrees anti-clockwise". So - "Rotation 120 degrees about O " is $2^{\text {nd }} \mathrm{M} 12^{\text {nd }} \mathrm{A} 1$ - "Rotation 120 degrees clockwise about O " is $2^{\text {nd }} \mathrm{M} 12^{\text {nd }} \mathrm{A} 0$
	Note	Writing down "centre $(0,0)$ with scale factor 2 " with no reference to "enlargement" or "enlarge" or "dilation" is $1^{\text {st }} \mathrm{M} 01^{\text {st }} \mathrm{A} 0$
	Note	Writing down " 120 degrees anti-clockwise about O " with no reference to "rotation" or "turn" is $2^{\text {nd }} \mathrm{M} 02^{\text {nd }} \mathrm{A} 0$
	Note	Give $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 0$ for writing "stretch parallel to x-axis and y-axis"
	Note	Give $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 0$ for writing "stretch scale factor 2 parallel to x-axis and stretch scale factor 2 parallel to y-axis $\{$ with centre $(0,0)\}$ "
	Note	If a candidate would score M1 A1 M1 A1 in part (b) and there is an error in their solution (e.g. a third transformation given) then give M1 A1 M1 A0
(c)	Note	$8^{11}=2^{33}=8589934592$
	Note	$8^{12}=2^{36}=68719476736$
	Note	(their \mathbf{P}^{2}) must be a genuine attempt at \mathbf{P}^{2} or must be for (their \mathbf{P}^{2}) seen in part (a)
	Note	Allow M1 A1 for writing $\mathbf{P}^{35}=2^{34}\left(\begin{array}{cc}-1 & \sqrt{3} \\ -\sqrt{3} & -1\end{array}\right)$
	Note	Stating $k=34, a=\sqrt{3}, b=-\sqrt{3}$ from no working is M1 A1
	Note	Give M0 A0 for $\mathbf{P}^{4}=2^{3}\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right) \Rightarrow \mathbf{P}^{35}=2^{34}\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right)$

Question 7 Notes Continued

7. (c)

Note	$\begin{aligned} & \text { Writing down }(8 \mathbf{I})^{11} \times\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right) \text { or }(2 \mathbf{I})^{33} \times\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right) \\ & \text { or }(8 \mathbf{I})^{11} \times\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)^{2} \text { or }(2 \mathbf{I})^{33} \times\left(\begin{array}{cc} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{array}\right)^{2} \end{aligned}$ with no attempt to evaluate $\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right)\left(\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right)$ is M0
Note	Allow M1 for applying $\mathbf{P}^{35}=\left(\mathbf{P}^{3}\right)^{11} \times \mathbf{P}^{2}$ or $\mathbf{P}^{35}=\mathbf{P}^{33} \times \mathbf{P}^{2}$ E.g. Allow M1 for $\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)^{11}\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$ or $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)^{33}\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$ or $\left(\begin{array}{cc}8^{11} & 0 \\ 0 & 8^{11}\end{array}\right)\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$ or $\left(\begin{array}{cc}2^{33} & 0 \\ 0 & 2^{33}\end{array}\right)\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$ or $(8)^{11}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$ or $(2)^{33}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}-2 & 2 \sqrt{3} \\ -2 \sqrt{3} & -2\end{array}\right)$
Note	Allow M1 for $(2)^{35}\left(\begin{array}{rr}\cos 240 & -\sin 240 \\ \sin 240 & \cos 240\end{array}\right)$ or $(2)^{35}\left(\begin{array}{rrr}\cos 4200 & -\sin 4200 \\ \sin 4200 & \cos 4200\end{array}\right)$ or $(2)^{35}\left(\begin{array}{cc}-0.5 & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -0.5\end{array}\right)$ or equivalent in radians
Note	Give M0 for $\mathbf{P}^{35}=\left(\mathbf{P}^{3}\right)^{11} \times \mathbf{P}^{2}$ by itself
Note	Give M0 for $\mathbf{P}^{35}=\mathbf{P}^{33} \times \mathbf{P}^{2}$ by itself

Question Number	Scheme	Notes	Marks
8.	(i) $\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)^{n}=\left(\begin{array}{cc}1+4 n & -8 n \\ 2 n & 1-4 n\end{array}\right)$ (ii) $u_{1}=8, u_{2}=$	${ }_{2}=8 u_{n+1}-12 u_{n} \Rightarrow u_{n}=6^{n}+2^{n}$	
(i)	$\begin{aligned} n=1, \text { LHS } & =\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right), \\ \text { RHS } & =\left(\begin{array}{cc} 1+4(1) & -8(1) \\ 2(1) & 1-4(1) \end{array}\right)=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right) \end{aligned}$	Shows or states that $\begin{array}{r} \text { either LHS }=\text { RHS }=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right) \\ \text { or } \mathrm{LHS}=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right), \mathrm{RHS} \end{array}=\left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right), ~ 又$	B1
	(Assume the result is true for $n=k$)		
	$\begin{aligned} & \left(\begin{array}{ll} 5 & -8 \\ 2 & -3 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 1+4 k & -8 k \\ 2 k & 1-4 k \end{array}\right)\left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right) \\ & \text { or }=\left(\begin{array}{cc} 5 & -8 \\ 2 & -3 \end{array}\right)\left(\begin{array}{cc} 1+4 k & -8 k \\ 2 k & 1-4 k \end{array}\right) \end{aligned}$	States intention to multiply $\left(\begin{array}{cc}1+4 k & -8 k \\ 2 k & 1-4 k\end{array}\right)$ by $\left(\begin{array}{cc}5 & -8 \\ 2 & -3\end{array}\right)$ (either way round)	M1
	$\begin{aligned} & =\left(\begin{array}{cc} 5+20 k-16 k & -8-32 k+24 k \\ 10 k+2-8 k & -16 k-3+12 k \end{array}\right) \\ & \text { or } \quad=\left(\begin{array}{cc} 5+20 k-16 k & -40 k-8+32 k \\ 2+8 k-6 k & -16 k-3+12 k \end{array}\right) \text { or }=\left(\begin{array}{cc} 5+4 k & -8-8 k \\ 2+2 k & -4 k-3 \end{array}\right) \end{aligned}$	$\left.\begin{array}{\|r\|r} & \begin{array}{r}\text { dependent on the } \\ \text { previous M mark }\end{array} \\ -8-8 k \\ -4 k-3\end{array}\right) \quad$Multiplies out to give a correct un-simplified matrix with at least 3 correct elements	dM1
	$=\left(\begin{array}{cc}1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1)\end{array}\right)$	Uses algebra to achieve this result with no errors	A1
	If the result is true for $n=k$, then it is true for $n=k+1$. As the result has been shown to be true for $n=1$, then the result is true for all $n\left(\in \mathbb{Z}^{+}\right)$		$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$
			(5)
(ii)	$\begin{array}{ll} \{n=1,\} & u_{1}=6^{1}+2^{1}=8 \\ \{n=2,\} & u_{2}=6^{2}+2^{2}=40 \end{array}$	Shows $u_{1}=8$ by writing an intermediate step of e.g. $6^{1}+2^{1}$ or $6+2$ and shows $u_{2}=40$ by writing an intermediate step of e.g. $6^{2}+2^{2}$ or $36+4$	B1
	(Assume the result is true for $n=k$ and $n=k+1$)		
	$\left\{u_{k+2}=8 u_{k+1}-12 u_{k} \Rightarrow\right\}$ Finds u_{k+2} by attempting to substitute $u_{k+1}=6^{k+1}+2^{k+1}$ $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)$ and $u_{k}=6^{k}+2^{k}$ into $u_{k+2}=8 u_{k+1}-12 u_{k}$ Condone one slip		M1
	$\text { either } \begin{aligned} \left\{u_{k+2}\right\} & =48\left(6^{k}\right)+16\left(2^{k}\right)-12\left(6^{k}+2^{k}\right) \\ & =36\left(6^{k}\right)+4\left(2^{k}\right) \\ & =6^{2}\left(6^{k}\right)+2^{2}\left(2^{k}\right) \end{aligned}$	Expresses u_{k+2} correctly in terms of only 6^{k} and 2^{k} or only 6^{k+1} and $2^{k+1}$$\begin{aligned} & \text { as } 8\left(6^{k+1}\right)-2\left(6^{k+1}\right)+4\left(2^{k+2}\right)-3\left(2^{k+2}\right) \\ & \text { as } 48\left(6^{k}\right)-12\left(6^{k}\right)+4\left(2^{k+2}\right)-3\left(2^{k+2}\right) \end{aligned}$	A1 (M1 on ePEN)
	$\text { or } \quad \begin{aligned} \left\{u_{k+2}\right\} & =8\left(6^{k+1}+2^{k+1}\right)-2\left(6^{k+1}\right)-6\left(2^{k+1}\right) \\ & =6\left(6^{k+1}\right)+2\left(2^{k+1}\right) \end{aligned}$		
	or $\quad\left\{u_{k+2}\right\}=8\left(6^{k+1}\right)-2\left(6^{k+1}\right)+4\left(2^{k+2}\right)-3\left(2^{k+2}\right)$		
	or $\quad\left\{u_{k+2}\right\}=48\left(6^{k}\right)-12\left(6^{k}\right)+4\left(2^{k+2}\right)-3\left(2^{k+2}\right)$		
	$=6^{k+2}+2^{k+2}$	dependent on the previous A mark Uses algebra in a complete method to achieve this result with no errors	A1
	If the result is true for $n=k$ and for $n=k+1$, then it is true for $n=k+2$. As the result has been shown to be true for $n=1$ and $n=2$, then the result is true for all $n\left(\in \mathbb{Z}^{+}\right)$		$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$
			(5)
			10

	Question 8 Notes	
8. (i)	Note	Final A1 is dependent on all previous marks being scored. It is gained by candidates conveying the ideas of all four underlined points in part (i) either at the end of their solution or as a narrative in their solution.
	Note	"Assume for $n=k,\left(\begin{array}{cc}5 & -8 \\ 2 & -3\end{array}\right)^{k}=\left(\begin{array}{cc}1+4 k & -8 k \\ 2 k & 1-4 k\end{array}\right)$ " satisfies the requirement "true for $n=k$ "
	Note	"For $n \in \mathbb{Z}^{+},\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)^{n}=\left(\begin{array}{cc}1+4 n & -8 n \\ 2 n & 1-4 n\end{array}\right)$ " satisfies the requirement "true for all n "
	Note	Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = ($\left.\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)$
	Note	Allow for B1 for stating either, $n=1,\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)=\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)$ or $\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)=\left(\begin{array}{cc}1+4 & -8 \\ 2 & 1-4\end{array}\right)$
	Note	E.g. $\left(\begin{array}{cc}1+4 k & -8 k \\ 2 k & 1-4 k\end{array}\right)\left(\begin{array}{cc}5 & -8 \\ 2 & -3\end{array}\right)=\left(\begin{array}{cc}1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1)\end{array}\right)$ with no intermediate working is M1 dM0 A0 A0
	Note	E.g. Writing any of - $\left(\begin{array}{cc}1+4 k & -8 k \\ 2 k & 1-4 k\end{array}\right)\left(\begin{array}{cc}5 & -8 \\ 2 & -3\end{array}\right)=\left(\begin{array}{cc}5+20 k-16 k & -8-32 k+24 k \\ 10 k+2-8 k & -16 k-3+12 k\end{array}\right)=\left(\begin{array}{cc}1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1)\end{array}\right)$ - $\left(\begin{array}{cc}1+4 k & -8 k \\ 2 k & 1-4 k\end{array}\right)\left(\begin{array}{ll}5 & -8 \\ 2 & -3\end{array}\right)=\left(\begin{array}{cc}5+4 k & -8-8 k \\ 2+2 k & -4 k-3\end{array}\right)=\left(\begin{array}{cc}1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1)\end{array}\right)$ is M1 dM1 A1
(ii)	Note	Ignore $u_{3}=8 u_{2}-12 u_{1}=8(40)-12(8)=224$ as part of their solution to (i)
	Note	Ignore $\{n=3,\} u_{2}=6^{3}+2^{3}=224$ as part of their solution to (i)
	Note	Full marks in (i) can be obtained for an equivalent proof where $n=k \rightarrow n=k-1$; i.e. $k \equiv k-1$
	Note	Final A1 is dependent on all previous marks being scored. It is gained by candidates conveying the ideas of all four underlined points in part (ii) either at the end of their solution or as a narrative in their solution.
	Note	"Assume for $n=k, u_{k}=6^{k}+2^{k}$ and for $n=k+1, u_{k+1}=6^{k+1}+2^{k+1}$ " satisfies the requirement "true for $n=k$ and $n=k+1$ "
	Note	"For $n \in \mathbb{Z}^{+}, u_{n}=6^{n}+2^{n}$ " satisfies the requirement "true for all n "
	Note	Writing $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=6^{k+2}+2^{k+2}$ with no intermediate working is M1 A0 A0 A0
	Note	E.g. Writing either - $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=48\left(6^{k}\right)+16\left(2^{k}\right)-12\left(6^{k}+2^{k}\right)=6^{k+2}+2^{k+2}$ - $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=36\left(6^{k}\right)+4\left(2^{k}\right)=6^{k+2}+2^{k+2}$ - $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=6^{2}\left(6^{k}\right)+2^{2}\left(2^{k}\right)=6^{k+2}+2^{k+2}$ - $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=8\left(6^{k+1}+2^{k+1}\right)-2\left(6^{k+1}\right)-6\left(2^{k+1}\right)=6^{k+2}+2^{k+2}$ - $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=6\left(6^{k+1}\right)+2\left(2^{k+1}\right)=6^{k+2}+2^{k+2}$ - $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=8\left(6^{k+1}\right)-2\left(6^{k+1}\right)+4\left(2^{k+2}\right)-3\left(2^{k+2}\right)=6^{k+2}+2^{k+2}$ - $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=(6)\left(6^{k+1}\right)+4\left(2^{k+2}\right)-3\left(2^{k+2}\right)=6^{k+2}+2^{k+2}$ is M1 A1 A1
	Note	Writing $u_{k+2}=8\left(6^{k+1}+2^{k+1}\right)-12\left(6^{k}+2^{k}\right)=(6) 6^{k+1}+2^{k+2}=6^{k+2}+2^{k+2}$ with no intermediate working is M1 A0 A0 A0

	Question 8 Notes Continued	
8. (ii)	Note	Full marks in (i) can be obtained for an equivalent proof where e.g. \bullet
8. (i), (ii)	Note	Referring to n as a real number their conclusion is final A0
	Note	Referring to n as any integer in their conclusion is final A0
	Note	Condone $n \in \mathbb{Z}^{*}$ as part of their conclusion for the final A1

	Question 9 Notes	
9. (a)	Note	Allow M1 (implied) for awrt 2.5, truncated 2.4, awrt -3.8, truncated -3.7, awrt 143°, awrt -217° or truncated -216°
	Note	Give B1 M1 A1 for writing $\arg \left(z_{1}-z_{2}\right)=$ awrt 2.498 from no working.
(b)	Note	Give $2^{\text {nd }} \mathrm{A} 0$ for writing down $\frac{1-7 \mathrm{i}}{25}$ with no reference to $\frac{1}{25}-\frac{7}{25} \mathrm{i}$ or $0.04-0.28 \mathrm{i}$
	Note	Give M1 $1^{\text {st }} \mathrm{A} 1$ for writing down $\frac{1-7 \mathrm{i}}{25}$ from no working in (b)
	Note	Give M1 A1 A1 for writing down $\frac{1-7 \mathrm{i}}{25}=\frac{1}{25}-\frac{7}{25} \mathrm{i}$ or $0.04-0.28 \mathrm{i}$ from no working in (b)
	Note	Give M1 A1 A1 for writing down $\frac{1}{25}-\frac{7}{25} \mathrm{i}$ or $0.04-0.28 \mathrm{i}$ from no working in (b)
	Note	Give $2^{\text {nd }} \mathrm{A} 0$ for simplifying a correct $\frac{1}{25}-\frac{7}{25} \mathrm{i}$ to give a final answer of $1-7 \mathrm{i}$
(c)	Note	M1 can be implied by awrt 0.283 or truncated 0.282
	Note	Give A0 for $\frac{\sqrt{50}}{25}$ or $0.28284 \ldots$ without reference to $\frac{\sqrt{2}}{5}$ or $\frac{1}{5} \sqrt{2}$
	Note	Give M0 for $\sqrt{\left(\frac{1}{25}\right)^{2}+\left(\frac{-7 \mathrm{i}}{25}\right)^{2}}$ unless recovered by later working
	Note	Give M1 A1 for writing $\left\|\frac{z_{1}}{z_{2}}\right\|=\frac{\sqrt{2}}{5}$ from no working.

